Prefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation.
نویسندگان
چکیده
Prefoldin is a molecular chaperone complex that regulates tubulin function in mitosis. Here, we show that Prefoldin depletion results in disruption of neuroblast polarity, leading to neuroblast overgrowth in Drosophila larval brains. Interestingly, co-depletion of Prefoldin and Partner of Inscuteable (Pins) leads to the formation of gigantic brains with severe neuroblast overgrowth, despite that Pins depletion alone results in smaller brains with partially disrupted neuroblast polarity. We show that Prefoldin acts synergistically with Pins to regulate asymmetric division of both neuroblasts and Intermediate Neural Progenitors (INPs). Surprisingly, co-depletion of Prefoldin and Pins also induces dedifferentiation of INPs back into neuroblasts, while depletion either Prefoldin or Pins alone is insufficient to do so. Furthermore, knocking down either α-tubulin or β-tubulin in pins(-) mutant background results in INP dedifferentiation back into neuroblasts, leading to the formation of ectopic neuroblasts. Overexpression of α-tubulin suppresses neuroblast overgrowth observed in prefoldin pins double mutant brains. Our data elucidate an unexpected function of Prefoldin and Pins in synergistically suppressing dedifferentiation of INPs back into neural stem cells.
منابع مشابه
Distinct roles of Gαi and Gβ13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions
The asymmetric division of Drosophila neuroblasts involves the basal localization of cell fate determinants and the generation of an asymmetric, apicobasally oriented mitotic spindle that leads to the formation of two daughter cells of unequal size. These features are thought to be controlled by an apically localized protein complex comprising of two signaling pathways: Bazooka/Drosophila atypi...
متن کاملDynamic Regulation of Cortical Microtubule Organization through Prefoldin-DELLA Interaction
Plant morphogenesis relies on specific patterns of cell division and expansion. It is well established that cortical microtubules influence the direction of cell expansion, but less is known about the molecular mechanisms that regulate microtubule arrangement. Here we show that the phytohormones gibberellins (GAs) regulate microtubule orientation through physical interaction between the nuclear...
متن کاملA mouse homologue of Drosophila pins can asymmetrically localize and substitute for pins function in Drosophila neuroblasts.
Asymmetric cell division is a fundamental mechanism used to generate cellular diversity in invertebrates and vertebrates. In Drosophila, asymmetric division of neuroblasts is achieved by the asymmetric segregation of cell fate determinants Prospero and Numb into the basal daughter cell. Asymmetric segregation of cell fate determinants requires an apically localized protein complex that includes...
متن کاملThe PDZ Protein Canoe Regulates the Asymmetric Division of Drosophila Neuroblasts and Muscle Progenitors
Asymmetric cell division is a conserved mechanism to generate cellular diversity during animal development and a key process in cancer and stem cell biology. Despite the increasing number of proteins characterized, the complex network of proteins interactions established during asymmetric cell division is still poorly understood. This suggests that additional components must be contributing to ...
متن کاملThe planar cell polarity protein Strabismus promotes Pins anterior localization during asymmetric division of sensory organ precursor cells in Drosophila.
Cell fate diversity is generated in part by the unequal segregation of cell-fate determinants during asymmetric cell division. In the Drosophila bristle lineage, the sensory organ precursor (pI) cell is polarized along the anteroposterior (AP) axis by Frizzled (Fz) receptor signaling. We show here that Fz localizes at the posterior apical cortex of the pI cell prior to mitosis, whereas Strabism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016